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A Second-Order Time-Accurate Method for
Determination of Concentration Distribution of
Multicomponent Mixtures in Separation Cascades

SHI ZENG* and CHUNTONG YING
DEPARTMENT OF ENGINEERING PHYSICS

TSINGHUA UNIVERSITY

BEIJING 100084, PEOPLE’S REPUBLIC OF CHINA

ABSTRACT

An implicit method is presented to study the transient process of concentration
distribution of multicomponent mixtures in separation cascades for gases. The prob-
lems that the first-order method (the so-called “transient approach”) encounters have
been overcome. The new method is second-order accurate in time and uncondition-
ally stable. The nonlinear difference equations at each time step are solved by the
q-iteration method. A simple cascade is studied as an example, and comparisons are
made with the first-order “transient approach.” The results show that the new
method is advantageous over the “transient approach” in both accuracy and compu-
tational efficiency.

Key Words. Multicomponent isotope separation; Separation cascades;
Transient process

INTRODUCTION

Analyzing and optimizing a separation process in a separation cascade for
multicomponent mixtures requires knowledge of the concentration distribu-
tion of components in the cascade at steady state and at certain times during
the transient process from one state to another. The concentration distribution
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ORDER                        REPRINTS

in the cascade is described by a set of nonlinear difference equations for the
steady state or by a set of nonlinear partial differential-difference equations for
the transient process. The present study focuses on separation cascades for
gases, such as cascades composed of gas centrifuges.

The solution of these equations has been studied for quite a long time, and
the methods can be classified into two categories.

1. Iterative methods: The difference equations for the steady state are used
in the solution. Iteration is necessary because of the nonlinearity in the
equations and the impossibility of direct solution. A typical iterative
method is outlined in Ref. 1.

2. Transient methods: The partial differential-difference equations are con-
sidered. By means of time marching, the concentration distribution at
steady state is reached after a sufficient number of time steps. Transient
methods are also useful in investigating transient processes of separation
cascades if the time marching is accurate enough. The approach of Wu
et al. (1) is a transient method. Since in this approach the time march-
ing is explicit, we refer to it as the explicit transient approach (the ETA)
here.

To the authors’ knowledge, more attention has been paid to concentration
distribution at steady state; iterative methods are better studied than transient
methods. However, iterative methods usually suffer from some significant
deficiencies, as mentioned in Ref. 2, which include consumption of consid-
erable computer time, difficulties in choosing appropriate initial values, and
low accuracy, so they may not work well or may even fail. All these may
greatly restrict their applicability. The ETA proposed in Ref. 1 seems to be
able to cope with the problems in choosing initial values and low accuracy.
The reasons are that convergence to steady state is guaranteed as long as the
time step is small enough, and the problem of low accuracy does not exist
since the difference equations can be satisfied at each cascade stage to the
required accuracy. The only problem with the ETA may be that for difficult
cases, such as complicated cascades and a large number of isotope compo-
nents, the time step has to be taken quite small, which results in a significant
increase of computation time. As far as the concentration distribution at
steady state is concerned, whether or not the transient process can be exactly
resolved does not matter. So in order to reduce computation time, the time
step can be chosen to be as large as possible, and some simplification (cf.
Ref. 1) can also be used to speed up the computation. In cases where tran-
sient processes are to be studied, the ETA provides us a means for this pur-
pose. But it is not accurate, especially at the initial stage of computation.
This is due not only to its first-order accuracy but also to the way in which
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ORDER                        REPRINTS

linearization is carried out. Furthermore, consumption of computation time
may become more significant compared with the solution for steady state be-
cause large time steps and simplification cannot be employed for reasons of
accuracy.

The work of the present study is to develop a method that is:

1. Second-order accurate in time. This means that with the same time step,
an order of higher accuracy can be achieved than with ETA.

2. Unconditionally stable. This gives us flexibility in studying the transient
process and steady state without worrying about the size of the time
step.

3. Reasonably fast. This means that the computation time should not be
large, or at least there should be no obvious increase compared with the
ETA. This is important since the advantage of having an order of higher
accuracy may be lost if the ETA can also obtain the same accuracy just by
using a very small time step without spending more computation time.
This method will be referred to as the implicit transient approach, the ITA
for short.

THE PARTIAL DIFFERENTIAL-DIFFERENCE EQUATIONS

For simplicity, we consider a popular separation cascade as shown in Fig.
1. The number of stages is N. The cascade has one feed F at stage Nf and two
withdrawals (the waste W and the product P at stage 1 and stage N, respec-
tively). Assume that in the feed there are Nc components, the concentrations
of which are Ci,F, i � 1, 2, . . ., Nc. The partial differential-difference equations
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FIG. 1 A square separation cascade with one feed and two withdrawals.
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are given by consideration of the mass conservation for the total mass and for
each component:

F � P � W (1)

�
�H

�

nC

t
i,n

� � (Ln � a)C�i,n�1�Ln�1C�i,n�1 � LnC�i,n � (Ln�1 � b)C�i,n � c (2)

(Ln � Ln�1 � b)Ci,n � LnC�i,n � (Ln�1 � b)C�i,n (3)

with

�W 1 	 n 
 Nf �W 1 	 n 	 Nf �FCi,F n � Nf

a � , b � , c �
�P Nf 	 n 	 N �P Nf 
 n 	 N 0 otherwise

Note that C�i,0 � C�i,1, and C�i,N�1 � C�i,N. Here Hn is the holdup of the process
gas in stage n; Ci,n, C�i,n, and C�i,n are the inflow, head, and tail concentrations
of the ith component; and Ln is the flow rate of the upflowing stream at the nth
stage. Ln is taken to be constant here. Nonlinearity arises from the following
well-known relationship (3):

�ij � �
C

C�

�

i

i
� /�

C

C�

�

j

j
� � �0

Mj�Mi (4)

where �ij is called the separation factor, and �0 is called the unit separation fac-
tor and is constant for a given type of separation units and isotopes. Mi is the
mole molecular weight of the ith component. By definition, the concentrations
are subject to the following condition:

∑
i

Ci,n � ∑
i

C�i,n � ∑
i

C�i,n � 1 (5)

SOLUTION METHODS

Outline of the Explicit Transient Approach

From Eqs. (4) and (5) we have

C �i � C�i /∑
j

�ijC�j (6)

Eliminating C and C� from Eq. (2) by using Eqs. (3) and (6) yields

Hn∑
j

ƒij �
�C

�t
�j,n
� � gi (7)
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where ƒij and gi are given by

ƒij � �
�

�

C
C
�
i

j

,

,

n

n
�

�



�Ln � L
1
n�1 � b� �(Ln�1 � b) � Ln� i � j


� �

Ln

L
�

n�

L
1

n�

�

1

b
� b

� i � j



gi � (Ln � a) � LnC�i,n

� (Ln�1 � b) � Ln�1C�i,n�1 � c

Therefore, equation (7) is a partial differential-difference equation for
C�. Note that ƒij is a function of C� and, therefore, Eq. (7) is nonlinear. The
ETA approximates the left-hand side of Eq. (7) by finite difference, which
gives

�
H



n

t
� ∑

j
ƒ ij

(m)C�j,n
(m�1) � gi

(m) � �
H



n

t
� ∑

j
ƒ ij

(m)C�j,n
(m) (8)

The superscripts in parentheses indicate the time level. Obviously, this ap-
proximation is at most first-order accurate in time. In order to avoid nonlin-
earity, linearization is carried out by evaluating its value at the previous time
step, i.e., ƒij

(m), which introduces an inaccuracy. Actually, it can be shown that
this differencing approximates �Ci,n/�t by

�
�C

�t
i,n
� ��

Ln

L
�

n�

L
1

n�

�

1

b
� b

�

��
C �i,n

(m�1




) �

t
C �i,n

(m)

���
Ln � L

L

n

n

�1 � b
��

C�i,n
(m�1




) �

t
C�i,n

(m)

� (9)

∑
j

�ijC�j,n
(m�1)

��∑
j

�ijC�j,n
(m)

C�i,n
��
∑

j

�ijC�j,n

C�i,n�1
��
∑

j

�ijC�j,n�1

�ijC�i,n
��

�∑
j

�ijC�j,n�
2

∑
j

�ijC�j,n � C�i,n

��

�∑
j

�ijC�j,n�
2
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However, by comparing Eq. (3) with Eq. (9), we immediately notice that in-
accuracy may come from the ratio ∑ j �ijC�i,n

(m�1)/∑ j �ijC�i,n
(m) unless it is equal

to unity, which is, of course, not the case in general. This ratio is actually the
ratio q(m�1)/q(m), with q � C�/C�, which is defined later in the section about
the q-iteration method. The two cases in which q(m�1)/q(m) � 1 are at steady
state and �0 � 1. This is because C�i

(m�1) � C�i
(m) at steady state, and �ij � 1

as well as ∑ j C�j,n
(m�1)/∑ j C�j,n

(m) � 1 for �0 � 1. In all other cases we do not have
q(m�1)/q(m) � 1. Furthermore, the larger �0 is, the larger the ratio, and there-
fore the less accurate the ETA. Obviously, the size of the time step 
t is a fac-
tor which affects accuracy since the ratio is larger with a larger 
t than with a
smaller 
t. Another point we need to mention is that the concentrations of all
components are coupled at the new time level and so an Nc � Nc algebraic sys-
tem has to be solved for each stage, which may be time consuming if Nc is
large.

If resolution of the transient process is not important, then �Ci,n /�t in Eq.
(2) can be simply replaced by �C�i,n/�t. Actually, this is a good approxima-
tion if �0 is close to unity such as it is in gaseous diffusion separation pro-
cesses. However, in separation process with large �0 (for instance, with gas
centrifuges) this approximation is problematic since C is significantly dif-
ferent from C�. The benefit of replacing C by C� is that coupling among the
concentrations is broken and, therefore, instead of solving an Nc � Nc alge-
braic system given by Eq. (8) for each stage to obtain the new values of C�
at the new time level, the new values are directly given. This saves a lot of
computation time. However, if we are only interested in the steady state, a
much better way would be to use the q-iteration method. This will be briefly
explained shortly when it is used to calculate the concentration distribution
at steady state.

The Second-Order Implicit Transient Approach

The derivative in Eq. (2) is approximated by

�
�H

�
nC
t

i,n
� � �

H



n

t
� (Ci,n

(m�1) � Ci,n
(m)) (10)

Using the Crank–Nicolson scheme, which is very popular in fluid dynamics
and is second-order accurate in time and unconditionally stable, we have

�
H



n

t
� (Ci,n

(m�1) � Ci,n
(m)) � �

1
2

� (gi
(m�1) � gi

(m)) (11)

which yields

734 ZENG AND YING

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
1
:
0
1
 
2
5
 
J
a
n
u
a
r
y
 
2
0
1
1



ORDER                        REPRINTS

� �
Ln

2
�1
� C�i,n�1

(m�1) � ��
H



n

t
� �

Ln � L
L

n

n

�1 � b
�� �

L
2
n
�� C�i,n

(m�1)

� ��
H



n

t
� �

Ln

L
�

n�

L
1

n�

�

1

b
� b

�� �
Ln�1

2
� b
�� C�i,n

(m�1) � �
(Ln

2
� a)
� C�i,n�1

(m�1)

� �
Ln

2
�1
� C�(m)

i,n�1 � ��
H



n

t
� �

Ln � L
L

n

n

�1 � b
�� �

L
2
n
�� C�i,n

(m)

(12)

� ��
H



n

t
� �

Ln

L
�

n�

L
1

n�

�

1

b
� b

�� �
Ln�1

2
� b
�� C�i,n

(m) � �
(Ln

2
� a)
� C�(m)

i,n�1�1 � c

For simplicity, we omit the superscripts and denote the above equation as

���n�1C�i,n�1 � ��nC�i,n � �nC�n � �n�1C�n�1 � rn (13)

The meanings of �̄, �̄, �, �, and r are clear, but � here is not to be confused
with the separation factor �ij and �0. Equations (13), (4), and (5) constitute the
set of equations to be solved for each component at every time step. Note that
when 
t is taken to be infinity, this set of equations is just the set of difference
equations for the steady state, and its solution is just as difficult as the solution
of the steady-state equations. The implicit method makes sense only when the
method of solving the set of nonlinear difference equations at each time step
does not suffer from the problems mentioned in the Introduction. The q-itera-
tion method proposed in Ref. 4 seems to be the method of choice.

Outline of the q-Iteration Method

Unlike the common iterative methods, iteration in the q-iteration method
takes place over the ratios of the head and tail concentrations of an arbitrarily
chosen component (for instance, the kth component), which are denoted as
qk,n, other than the concentrations themselves. So with specified values of qk,n

� C�k,n /C�k,n, we have

C�i,n � qi,nC�i,n (14)

where qi,n � qk,n�0
Mk�Mi. Substituting Eq. (14) into Eq. (13) gives

��n�1C�i,n�1 � �nC�n � �n�1C�n�1 � rn (15)

with �n�1 � �̄n�1qi,n�1, and �n � �̄nqi,n � �n. The equation system given by
Eq. (15) has a tridiagonal coefficient matrix and is easy to solve. Then C�i,n and
Ci,n are determined, respectively, by Eqs. (14) and (3). However, Condition (5)
is not satisfied, so the values of qk,n need to be adjusted in the following way:

qk,n � (1 � �)qk,n � � (16)

∑
i

Ci,n

��∑
i

�0
Mk�MiC�i,n
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ORDER                        REPRINTS

Here � is a weighting factor and 0 
 � 	 1. The iteration is terminated when

�	 ∑
i

Ci,n � 1 	, 	 ∑
i

C�i,n � 1 	, 	 ∑
i

C�i,n � 1 	� 	 � (17)

with � a small given number. � is fixed at 10�4 in our calculations.

CALCULATIONS AND COMPARISONS

The following cascade is used for our numerical experiments and compar-
isons. The number of stages is 100 with the feed at the 50th stage. The enter-
stage flow rate Gn /F � 10, and P/F � 0.85. This cascade is of course not prac-
tical, but it does not matter for the purpose of demonstrating the implicit
method and making comparisons. The process gas is chosen to be Xe, which
has nine stable isotopes and for which �0 � 1.4. We use a fairly long cascade
and an element with quite a large number of stable isotopes to create sufficient
difficulty for the methods. All computations were performed on a PC with a
Pentium Pro-200 processor.

Figure 2 shows the error change during the transient process from an initial
state, with concentrations of all components at each stage the same as those of

max
n

736 ZENG AND YING

FIG. 2 The error change during the transient process.

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
1
:
0
1
 
2
5
 
J
a
n
u
a
r
y
 
2
0
1
1
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the feed, to the steady state. The error here is defined as

err � �∑
i

(FCi,F � WC�i,1 � PC�i,N)2�
1/2

The steady state is thought to be reached when err 	 10�4. The ratio Hn /(F
t)
is taken to be 15, which is nearly the smallest value that the ETA can use for
stability consideration, or in another words, the largest value of 
t for a given
value of Hn. Hereafter we assume Hn � 0.3 g without loss of generality, and
so 
t � 0.02 second. The difference is clear from Fig. 2. The ETA predicts
that the transient process will take 432 seconds whereas the ITA predicts 532
seconds. Another big difference is that the curve for the ETA has two flat ar-
eas while that for the ITA has only one.

To understand the above phenomena, the ratio q(m�4)/q(m) is plotted in Fig.
3 for the ETA and in Fig. 4 for the ITA against the stage number at different
times. In the two figures we have shifted all curves except the two for t � 8
seconds by a distance of 0.001 second between the two curves of successive
time steps in the direction of the ordinates to avoid overlapping. The ratio of
the quantity q for two successive time steps is not used in the figures because
we want to keep the value of the ratio large enough to show the difference
more clearly due to plotting accuracy. We see that there are peaks (and val-
leys) traveling along the cascade in both directions. The transient process

MULTICOMPONENT ISOTOPE SEPARATION 737

FIG. 3 The traveling of the q(m�4)/q(m) peaks in the ETA case.
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ORDER                        REPRINTS

shown in Fig. 2 has a close relationship with the traveling of the peaks. First,
let us look at these peaks for the ETA. Four peaks can be clearly identified, as
indicated in Fig. 3. Peaks 1, 3, and 4 move out of the cascade at about 96, 40,
and 16 seconds, respectively, which correspond to the first, the second, and the
third decline of the error. One can estimate that Peak 2 goes out of the cascade
at 346 seconds, which is just about the time that the last decline of the error
takes place. A similar phenomenon happens in the ITA. Where there are also
four peaks, and they look like the four peaks of the ETA case but are upside
down. Peak 4 moves out of the cascade at about 24 seconds, and Peaks 1 and
3 nearly vanish at 48 seconds. Peak 2 is expected to go outside of the cascade
at about 450 seconds. Again, the disappearances of peaks correspond to the
decline of error. Since Peaks 1 and 3 travel out of the cascade at almost the
same time, the third decline of the error as for the ETA (cf. Fig. 2) does not
show up. These differences result from the initial condition which satisfies
Eqs. (1), (2), (3), and (5) but not (4). The ETA gives large changes in C and
C� relative to the initial values at the first time step, no matter how small 
t is,
but the change in C� are small. This does not seem to be reasonable, since it is
C� and C� that should have big changes due to separation when the concen-
tration of the entering flow of a stage is C. At this point, the results from the
ITA appear to be reasonable, i.e., C has small changes but C� and C� have
large changes that satisfy Eq. (4). The concentration distributions of a compo-

738 ZENG AND YING

FIG. 4 The traveling of the q(m�4)/q(m) peaks in the ITA case.
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ORDER                        REPRINTS

nent at the first time step for the ETA and the ITA are plotted in Fig. 5. By us-
ing the results at the first time step from the ETA as the initial condition, both
methods have the same error change histories. Of course, the initial condition
used before may not exist in practice, but a very appropriate initial condition
is not easily imposed. This implies that the ETA may not be very reliable in
resolving the transient process if the initial condition is not carefully specified,
unless �0 is close to unity.

Now we show that only when q(m�1)/q(m) � 1 will the ETA give the same
result as the ITA. As mentioned before, in two special cases q(m�1)/q(m) � 1:
steady state and �0 � 1. We see from Fig. 2 that as steady state is approached
in the former case, the curve from the ETA resembles that from the ITA. In
the latter case the error changes are presented in Fig. 6 for different values of
�0. Again, the curves for different �0 are shifted to give more clarity. Clearly,
as �0→1, the results of the ETA gradually approach those of the ITA. So when
�0 is close to unity, the influence of the initial condition may be negligible.

From the point of view of computational cost, the ITA is not more expen-
sive than the ETA, although it is implicit. To demonstrate this briefly, we
make the following comparisons of timing which were carried out by using the
computer’s internal clock to measure the elapsed time used for the calcula-
tions to satisfy the required accuracy from the same initial condition. There is

MULTICOMPONENT ISOTOPE SEPARATION 739

FIG. 5 C, C�, and C� distribution at the first time step for the Component 134Xe.
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ORDER                        REPRINTS

only one process running on the computer during timing, and no input /output
takes place. With 
t � 0.02 second the ETA uses 935 seconds and the ITA
spends 674 seconds, which are roughly comparable. Reducing 
t by a factor
of 10, the time used by the ETA is increased to 9332 seconds, a 10 times in-
crease. But the ITA uses only 2517 seconds. This is not surprising, since no
matter how small the time step is, the ETA has to do the same amount of work
at every time step to solve Nc equations for each stage, while the ITA needs to
do a smaller amount of work because the solutions at two successive time
steps are closer with smaller 
t and consequently the number of iterations over
nonlinearity is reduced. Using the ITA, one does not have to use small time
steps because of its higher accuracy and unconditional stability. For this test
problem, the transient process can still be quite correctly resolved even when

t � 3 seconds although some little wiggles start to appear in the error–time
plot. In this case the computation costs 36 seconds. If only the steady state is
of interest, the time step 
t can be taken very large or the ratio Hn /
t can be
set to zero. So the time marching process is skipped and only iterations over
nonlinearity are performed. Now the ITA is just the q-iteration method and it
consumes only 1.65 seconds to obtain the solution for the steady state.

To sum up, we conclude that the ITA is advantageous over the ETA for both
accuracy and computational cost. The ITA can study transient processes with
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FIG. 6 The error changes for different values of �0.
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high accuracy, and it also serves as an efficient method for the investigation
of steady state.
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